Run
10228446

Run 10228446

Task 3022 (Supervised Classification) vowel Uploaded 06-06-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C376aa9ed228852(n3=sklearn.pipeline.C58aaa97b6a5c1(n4=skle arn.pipeline.C376aa9ed225ba3(n5=sklearn.compose._column_transformer.C376aa9 ed225624(n6=sklearn.preprocessing._function_transformer.C58aaa97b6a1d3)),n7 =sklearn.pipeline.C376aa9ed227122(n8=sklearn.compose._column_transformer.C3 76aa9ed226d7b(n9=sklearn.preprocessing._function_transformer.C376aa9ed226ae 2))),n10=fastsklearnfeature.transformations.IdentityTransformation.C376aa9e d228491,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C100
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state13021
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C376aa9ed228852(n3=sklearn.pipeline.C58aaa97b6a5c1(n4=sklearn.pipeline.C376aa9ed225ba3(n5=sklearn.compose._column_transformer.C376aa9ed225624(n6=sklearn.preprocessing._function_transformer.C58aaa97b6a1d3)),n7=sklearn.pipeline.C376aa9ed227122(n8=sklearn.compose._column_transformer.C376aa9ed226d7b(n9=sklearn.preprocessing._function_transformer.C376aa9ed226ae2))),n10=fastsklearnfeature.transformations.IdentityTransformation.C376aa9ed228491,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C376aa9ed228852(n3=sklearn.pipeline.C58aaa97b6a5c1(n4=sklearn.pipeline.C376aa9ed225ba3(n5=sklearn.compose._column_transformer.C376aa9ed225624(n6=sklearn.preprocessing._function_transformer.C58aaa97b6a1d3)),n7=sklearn.pipeline.C376aa9ed227122(n8=sklearn.compose._column_transformer.C376aa9ed226d7b(n9=sklearn.preprocessing._function_transformer.C376aa9ed226ae2))),n10=fastsklearnfeature.transformations.IdentityTransformation.C376aa9ed228491,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n3", "step_name": "n3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C58aaa97b6a5c1(n4=sklearn.pipeline.C376aa9ed225ba3(n5=sklearn.compose._column_transformer.C376aa9ed225624(n6=sklearn.preprocessing._function_transformer.C58aaa97b6a1d3)),n7=sklearn.pipeline.C376aa9ed227122(n8=sklearn.compose._column_transformer.C376aa9ed226d7b(n9=sklearn.preprocessing._function_transformer.C376aa9ed226ae2)))(1)_n_jobsnull
sklearn.pipeline.C58aaa97b6a5c1(n4=sklearn.pipeline.C376aa9ed225ba3(n5=sklearn.compose._column_transformer.C376aa9ed225624(n6=sklearn.preprocessing._function_transformer.C58aaa97b6a1d3)),n7=sklearn.pipeline.C376aa9ed227122(n8=sklearn.compose._column_transformer.C376aa9ed226d7b(n9=sklearn.preprocessing._function_transformer.C376aa9ed226ae2)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n4", "step_name": "n4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}]
sklearn.pipeline.C58aaa97b6a5c1(n4=sklearn.pipeline.C376aa9ed225ba3(n5=sklearn.compose._column_transformer.C376aa9ed225624(n6=sklearn.preprocessing._function_transformer.C58aaa97b6a1d3)),n7=sklearn.pipeline.C376aa9ed227122(n8=sklearn.compose._column_transformer.C376aa9ed226d7b(n9=sklearn.preprocessing._function_transformer.C376aa9ed226ae2)))(1)_transformer_weightsnull
sklearn.pipeline.C376aa9ed225ba3(n5=sklearn.compose._column_transformer.C376aa9ed225624(n6=sklearn.preprocessing._function_transformer.C58aaa97b6a1d3))(1)_memorynull
sklearn.pipeline.C376aa9ed225ba3(n5=sklearn.compose._column_transformer.C376aa9ed225624(n6=sklearn.preprocessing._function_transformer.C58aaa97b6a1d3))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n5", "step_name": "n5"}}]
sklearn.compose._column_transformer.C376aa9ed225624(n6=sklearn.preprocessing._function_transformer.C58aaa97b6a1d3)(1)_n_jobsnull
sklearn.compose._column_transformer.C376aa9ed225624(n6=sklearn.preprocessing._function_transformer.C58aaa97b6a1d3)(1)_remainder"drop"
sklearn.compose._column_transformer.C376aa9ed225624(n6=sklearn.preprocessing._function_transformer.C58aaa97b6a1d3)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376aa9ed225624(n6=sklearn.preprocessing._function_transformer.C58aaa97b6a1d3)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376aa9ed225624(n6=sklearn.preprocessing._function_transformer.C58aaa97b6a1d3)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6", "argument_1": [3]}}]
sklearn.preprocessing._function_transformer.C58aaa97b6a1d3(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58aaa97b6a1d3(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58aaa97b6a1d3(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58aaa97b6a1d3(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58aaa97b6a1d3(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58aaa97b6a1d3(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58aaa97b6a1d3(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58aaa97b6a1d3(1)_validatefalse
sklearn.pipeline.C376aa9ed227122(n8=sklearn.compose._column_transformer.C376aa9ed226d7b(n9=sklearn.preprocessing._function_transformer.C376aa9ed226ae2))(1)_memorynull
sklearn.pipeline.C376aa9ed227122(n8=sklearn.compose._column_transformer.C376aa9ed226d7b(n9=sklearn.preprocessing._function_transformer.C376aa9ed226ae2))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8"}}]
sklearn.compose._column_transformer.C376aa9ed226d7b(n9=sklearn.preprocessing._function_transformer.C376aa9ed226ae2)(1)_n_jobsnull
sklearn.compose._column_transformer.C376aa9ed226d7b(n9=sklearn.preprocessing._function_transformer.C376aa9ed226ae2)(1)_remainder"drop"
sklearn.compose._column_transformer.C376aa9ed226d7b(n9=sklearn.preprocessing._function_transformer.C376aa9ed226ae2)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C376aa9ed226d7b(n9=sklearn.preprocessing._function_transformer.C376aa9ed226ae2)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C376aa9ed226d7b(n9=sklearn.preprocessing._function_transformer.C376aa9ed226ae2)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C376aa9ed226ae2(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C376aa9ed226ae2(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C376aa9ed226ae2(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C376aa9ed226ae2(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C376aa9ed226ae2(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C376aa9ed226ae2(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C376aa9ed226ae2(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C376aa9ed226ae2(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C376aa9ed228491(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.899 ± 0.0113
Per class
Cross-validation details (10-fold Crossvalidation)
0.5095 ± 0.0493
Per class
Cross-validation details (10-fold Crossvalidation)
0.4678 ± 0.0558
Cross-validation details (10-fold Crossvalidation)
0.4763 ± 0.018
Cross-validation details (10-fold Crossvalidation)
0.119 ± 0.003
Cross-validation details (10-fold Crossvalidation)
0.1653
Cross-validation details (10-fold Crossvalidation)
990
Per class
Cross-validation details (10-fold Crossvalidation)
0.5095 ± 0.0583
Per class
Cross-validation details (10-fold Crossvalidation)
0.5162 ± 0.0507
Cross-validation details (10-fold Crossvalidation)
3.4594
Cross-validation details (10-fold Crossvalidation)
0.5162 ± 0.0507
Per class
Cross-validation details (10-fold Crossvalidation)
0.7197 ± 0.0179
Cross-validation details (10-fold Crossvalidation)
0.2875
Cross-validation details (10-fold Crossvalidation)
0.2415 ± 0.0051
Cross-validation details (10-fold Crossvalidation)
0.8402 ± 0.0178
Cross-validation details (10-fold Crossvalidation)