Run
10229129

Run 10229129

Task 146230 (Supervised Classification) Titanic Uploaded 08-07-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C3783b5e9fa5d57(n3=sklearn.pipeline.C3783b5e9fa590c(n4=skl earn.pipeline.C3783b5e9fa4e65(n5=sklearn.compose._column_transformer.C3783b 5e9fa4c43(n6=sklearn.preprocessing._function_transformer.C58d2bca99076d)),n 7=sklearn.pipeline.C3783b5e9fa56bd(n8=sklearn.compose._column_transformer.C 58d2bca99088d(n9=sklearn.preprocessing._function_transformer.C3783b5e9fa548 d))),n10=fastsklearnfeature.transformations.IdentityTransformation.C3783b5e 9fa5c4a,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(23)_C0.001
sklearn.linear_model.logistic.LogisticRegression(23)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(23)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(23)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(23)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(23)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(23)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(23)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(23)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(23)_random_state19957
sklearn.linear_model.logistic.LogisticRegression(23)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(23)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(23)_verbose0
sklearn.linear_model.logistic.LogisticRegression(23)_warm_startfalse
sklearn.pipeline.C3783b5e9fa5d57(n3=sklearn.pipeline.C3783b5e9fa590c(n4=sklearn.pipeline.C3783b5e9fa4e65(n5=sklearn.compose._column_transformer.C3783b5e9fa4c43(n6=sklearn.preprocessing._function_transformer.C58d2bca99076d)),n7=sklearn.pipeline.C3783b5e9fa56bd(n8=sklearn.compose._column_transformer.C58d2bca99088d(n9=sklearn.preprocessing._function_transformer.C3783b5e9fa548d))),n10=fastsklearnfeature.transformations.IdentityTransformation.C3783b5e9fa5c4a,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C3783b5e9fa5d57(n3=sklearn.pipeline.C3783b5e9fa590c(n4=sklearn.pipeline.C3783b5e9fa4e65(n5=sklearn.compose._column_transformer.C3783b5e9fa4c43(n6=sklearn.preprocessing._function_transformer.C58d2bca99076d)),n7=sklearn.pipeline.C3783b5e9fa56bd(n8=sklearn.compose._column_transformer.C58d2bca99088d(n9=sklearn.preprocessing._function_transformer.C3783b5e9fa548d))),n10=fastsklearnfeature.transformations.IdentityTransformation.C3783b5e9fa5c4a,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n3", "step_name": "n3"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n10", "step_name": "n10"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C3783b5e9fa590c(n4=sklearn.pipeline.C3783b5e9fa4e65(n5=sklearn.compose._column_transformer.C3783b5e9fa4c43(n6=sklearn.preprocessing._function_transformer.C58d2bca99076d)),n7=sklearn.pipeline.C3783b5e9fa56bd(n8=sklearn.compose._column_transformer.C58d2bca99088d(n9=sklearn.preprocessing._function_transformer.C3783b5e9fa548d)))(1)_n_jobsnull
sklearn.pipeline.C3783b5e9fa590c(n4=sklearn.pipeline.C3783b5e9fa4e65(n5=sklearn.compose._column_transformer.C3783b5e9fa4c43(n6=sklearn.preprocessing._function_transformer.C58d2bca99076d)),n7=sklearn.pipeline.C3783b5e9fa56bd(n8=sklearn.compose._column_transformer.C58d2bca99088d(n9=sklearn.preprocessing._function_transformer.C3783b5e9fa548d)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n4", "step_name": "n4"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n7", "step_name": "n7"}}]
sklearn.pipeline.C3783b5e9fa590c(n4=sklearn.pipeline.C3783b5e9fa4e65(n5=sklearn.compose._column_transformer.C3783b5e9fa4c43(n6=sklearn.preprocessing._function_transformer.C58d2bca99076d)),n7=sklearn.pipeline.C3783b5e9fa56bd(n8=sklearn.compose._column_transformer.C58d2bca99088d(n9=sklearn.preprocessing._function_transformer.C3783b5e9fa548d)))(1)_transformer_weightsnull
sklearn.pipeline.C3783b5e9fa4e65(n5=sklearn.compose._column_transformer.C3783b5e9fa4c43(n6=sklearn.preprocessing._function_transformer.C58d2bca99076d))(1)_memorynull
sklearn.pipeline.C3783b5e9fa4e65(n5=sklearn.compose._column_transformer.C3783b5e9fa4c43(n6=sklearn.preprocessing._function_transformer.C58d2bca99076d))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n5", "step_name": "n5"}}]
sklearn.compose._column_transformer.C3783b5e9fa4c43(n6=sklearn.preprocessing._function_transformer.C58d2bca99076d)(1)_n_jobsnull
sklearn.compose._column_transformer.C3783b5e9fa4c43(n6=sklearn.preprocessing._function_transformer.C58d2bca99076d)(1)_remainder"drop"
sklearn.compose._column_transformer.C3783b5e9fa4c43(n6=sklearn.preprocessing._function_transformer.C58d2bca99076d)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C3783b5e9fa4c43(n6=sklearn.preprocessing._function_transformer.C58d2bca99076d)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C3783b5e9fa4c43(n6=sklearn.preprocessing._function_transformer.C58d2bca99076d)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n6", "step_name": "n6", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C58d2bca99076d(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C58d2bca99076d(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C58d2bca99076d(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C58d2bca99076d(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C58d2bca99076d(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C58d2bca99076d(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C58d2bca99076d(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C58d2bca99076d(1)_validatefalse
sklearn.pipeline.C3783b5e9fa56bd(n8=sklearn.compose._column_transformer.C58d2bca99088d(n9=sklearn.preprocessing._function_transformer.C3783b5e9fa548d))(1)_memorynull
sklearn.pipeline.C3783b5e9fa56bd(n8=sklearn.compose._column_transformer.C58d2bca99088d(n9=sklearn.preprocessing._function_transformer.C3783b5e9fa548d))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n8", "step_name": "n8"}}]
sklearn.compose._column_transformer.C58d2bca99088d(n9=sklearn.preprocessing._function_transformer.C3783b5e9fa548d)(1)_n_jobsnull
sklearn.compose._column_transformer.C58d2bca99088d(n9=sklearn.preprocessing._function_transformer.C3783b5e9fa548d)(1)_remainder"drop"
sklearn.compose._column_transformer.C58d2bca99088d(n9=sklearn.preprocessing._function_transformer.C3783b5e9fa548d)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C58d2bca99088d(n9=sklearn.preprocessing._function_transformer.C3783b5e9fa548d)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C58d2bca99088d(n9=sklearn.preprocessing._function_transformer.C3783b5e9fa548d)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n9", "step_name": "n9", "argument_1": [2]}}]
sklearn.preprocessing._function_transformer.C3783b5e9fa548d(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C3783b5e9fa548d(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C3783b5e9fa548d(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C3783b5e9fa548d(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C3783b5e9fa548d(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C3783b5e9fa548d(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C3783b5e9fa548d(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C3783b5e9fa548d(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C3783b5e9fa5c4a(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.6886 ± 0.0447
Per class
Cross-validation details (10-fold Crossvalidation)
0.7635 ± 0.038
Per class
Cross-validation details (10-fold Crossvalidation)
0.4456 ± 0.0907
Cross-validation details (10-fold Crossvalidation)
-0.1262 ± 0.0156
Cross-validation details (10-fold Crossvalidation)
0.4626 ± 0.005
Cross-validation details (10-fold Crossvalidation)
0.4374 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
2201
Per class
Cross-validation details (10-fold Crossvalidation)
0.7653 ± 0.0378
Per class
Cross-validation details (10-fold Crossvalidation)
0.7733 ± 0.0345
Cross-validation details (10-fold Crossvalidation)
0.9077 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.7733 ± 0.0345
Per class
Cross-validation details (10-fold Crossvalidation)
1.0575 ± 0.012
Cross-validation details (10-fold Crossvalidation)
0.4676 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.4676 ± 0.0055
Cross-validation details (10-fold Crossvalidation)
0.9999 ± 0.0123
Cross-validation details (10-fold Crossvalidation)