Run
10304429

Run 10304429

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 01-08-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.21.0.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C37967f99d684bd(n157=sklearn.pipeline.C37967f99d67dad(n158 =sklearn.pipeline.C37967f99d66903(n159=sklearn.compose._column_transformer. C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d 661cd)),n161=sklearn.pipeline.C37967f99d67954(n162=sklearn.compose._column_ transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transforme r.C37967f99d674a2))),n164=fastsklearnfeature.transformations.IdentityTransf ormation.C37967f99d682c1,c=sklearn.linear_model.logistic.LogisticRegression )(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(27)_C0.01
sklearn.linear_model.logistic.LogisticRegression(27)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(27)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(27)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(27)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(27)_l1_rationull
sklearn.linear_model.logistic.LogisticRegression(27)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(27)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(27)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(27)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(27)_random_state49966
sklearn.linear_model.logistic.LogisticRegression(27)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(27)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(27)_verbose0
sklearn.linear_model.logistic.LogisticRegression(27)_warm_startfalse
sklearn.pipeline.C37967f99d684bd(n157=sklearn.pipeline.C37967f99d67dad(n158=sklearn.pipeline.C37967f99d66903(n159=sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd)),n161=sklearn.pipeline.C37967f99d67954(n162=sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2))),n164=fastsklearnfeature.transformations.IdentityTransformation.C37967f99d682c1,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C37967f99d684bd(n157=sklearn.pipeline.C37967f99d67dad(n158=sklearn.pipeline.C37967f99d66903(n159=sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd)),n161=sklearn.pipeline.C37967f99d67954(n162=sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2))),n164=fastsklearnfeature.transformations.IdentityTransformation.C37967f99d682c1,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n157", "step_name": "n157"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n164", "step_name": "n164"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C37967f99d684bd(n157=sklearn.pipeline.C37967f99d67dad(n158=sklearn.pipeline.C37967f99d66903(n159=sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd)),n161=sklearn.pipeline.C37967f99d67954(n162=sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2))),n164=fastsklearnfeature.transformations.IdentityTransformation.C37967f99d682c1,c=sklearn.linear_model.logistic.LogisticRegression)(1)_verbosefalse
sklearn.pipeline.C37967f99d67dad(n158=sklearn.pipeline.C37967f99d66903(n159=sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd)),n161=sklearn.pipeline.C37967f99d67954(n162=sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2)))(1)_n_jobsnull
sklearn.pipeline.C37967f99d67dad(n158=sklearn.pipeline.C37967f99d66903(n159=sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd)),n161=sklearn.pipeline.C37967f99d67954(n162=sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n158", "step_name": "n158"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n161", "step_name": "n161"}}]
sklearn.pipeline.C37967f99d67dad(n158=sklearn.pipeline.C37967f99d66903(n159=sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd)),n161=sklearn.pipeline.C37967f99d67954(n162=sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2)))(1)_transformer_weightsnull
sklearn.pipeline.C37967f99d67dad(n158=sklearn.pipeline.C37967f99d66903(n159=sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd)),n161=sklearn.pipeline.C37967f99d67954(n162=sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2)))(1)_verbosefalse
sklearn.pipeline.C37967f99d66903(n159=sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd))(1)_memorynull
sklearn.pipeline.C37967f99d66903(n159=sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n159", "step_name": "n159"}}]
sklearn.pipeline.C37967f99d66903(n159=sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd))(1)_verbosefalse
sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd)(1)_n_jobsnull
sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd)(1)_remainder"drop"
sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n160", "step_name": "n160", "argument_1": [0]}}]
sklearn.compose._column_transformer.C37967f99d66512(n160=sklearn.preprocessing._function_transformer.C37967f99d661cd)(1)_verbosefalse
sklearn.preprocessing._function_transformer.C37967f99d661cd(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37967f99d661cd(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37967f99d661cd(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37967f99d661cd(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37967f99d661cd(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37967f99d661cd(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37967f99d661cd(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37967f99d661cd(1)_validatefalse
sklearn.pipeline.C37967f99d67954(n162=sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2))(1)_memorynull
sklearn.pipeline.C37967f99d67954(n162=sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n162", "step_name": "n162"}}]
sklearn.pipeline.C37967f99d67954(n162=sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2))(1)_verbosefalse
sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2)(1)_n_jobsnull
sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2)(1)_remainder"drop"
sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n163", "step_name": "n163", "argument_1": [1]}}]
sklearn.compose._column_transformer.C37967f99d676ea(n163=sklearn.preprocessing._function_transformer.C37967f99d674a2)(1)_verbosefalse
sklearn.preprocessing._function_transformer.C37967f99d674a2(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37967f99d674a2(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37967f99d674a2(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37967f99d674a2(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37967f99d674a2(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37967f99d674a2(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37967f99d674a2(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37967f99d674a2(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C37967f99d682c1(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7306 ± 0.0432
Per class
Cross-validation details (10-fold Crossvalidation)
0.6428 ± 0.0456
Per class
Cross-validation details (10-fold Crossvalidation)
0.2489 ± 0.0735
Cross-validation details (10-fold Crossvalidation)
-0.3388 ± 0.0643
Cross-validation details (10-fold Crossvalidation)
0.4201 ± 0.0163
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.7684 ± 0.037
Per class
Cross-validation details (10-fold Crossvalidation)
0.615 ± 0.0471
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.615 ± 0.0471
Per class
Cross-validation details (10-fold Crossvalidation)
1.1572 ± 0.0455
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4603 ± 0.0145
Cross-validation details (10-fold Crossvalidation)
1.0808 ± 0.0349
Cross-validation details (10-fold Crossvalidation)