Run
10387316

Run 10387316

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 26-08-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C37aa0a70b9b12a(n75=sklearn.pipeline.C37aa0a70b9abb2(n76=s klearn.pipeline.C37aa0a70b99c5e(n77=sklearn.compose._column_transformer.C59 1010b45c287(n78=sklearn.preprocessing._function_transformer.C591010b45c241) ),n79=sklearn.pipeline.C591010b45c401(n80=sklearn.compose._column_transform er.C37aa0a70b9a650(n81=sklearn.preprocessing._function_transformer.C37aa0a7 0b9a4e8))),n82=fastsklearnfeature.transformations.IdentityTransformation.C3 7aa0a70b9afb3,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(28)_C0.01
sklearn.linear_model.logistic.LogisticRegression(28)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(28)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(28)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(28)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(28)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(28)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(28)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(28)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(28)_random_state11557
sklearn.linear_model.logistic.LogisticRegression(28)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(28)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(28)_verbose0
sklearn.linear_model.logistic.LogisticRegression(28)_warm_startfalse
sklearn.pipeline.C37aa0a70b9b12a(n75=sklearn.pipeline.C37aa0a70b9abb2(n76=sklearn.pipeline.C37aa0a70b99c5e(n77=sklearn.compose._column_transformer.C591010b45c287(n78=sklearn.preprocessing._function_transformer.C591010b45c241)),n79=sklearn.pipeline.C591010b45c401(n80=sklearn.compose._column_transformer.C37aa0a70b9a650(n81=sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8))),n82=fastsklearnfeature.transformations.IdentityTransformation.C37aa0a70b9afb3,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C37aa0a70b9b12a(n75=sklearn.pipeline.C37aa0a70b9abb2(n76=sklearn.pipeline.C37aa0a70b99c5e(n77=sklearn.compose._column_transformer.C591010b45c287(n78=sklearn.preprocessing._function_transformer.C591010b45c241)),n79=sklearn.pipeline.C591010b45c401(n80=sklearn.compose._column_transformer.C37aa0a70b9a650(n81=sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8))),n82=fastsklearnfeature.transformations.IdentityTransformation.C37aa0a70b9afb3,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n75", "step_name": "n75"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n82", "step_name": "n82"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C37aa0a70b9abb2(n76=sklearn.pipeline.C37aa0a70b99c5e(n77=sklearn.compose._column_transformer.C591010b45c287(n78=sklearn.preprocessing._function_transformer.C591010b45c241)),n79=sklearn.pipeline.C591010b45c401(n80=sklearn.compose._column_transformer.C37aa0a70b9a650(n81=sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8)))(1)_n_jobsnull
sklearn.pipeline.C37aa0a70b9abb2(n76=sklearn.pipeline.C37aa0a70b99c5e(n77=sklearn.compose._column_transformer.C591010b45c287(n78=sklearn.preprocessing._function_transformer.C591010b45c241)),n79=sklearn.pipeline.C591010b45c401(n80=sklearn.compose._column_transformer.C37aa0a70b9a650(n81=sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n76", "step_name": "n76"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n79", "step_name": "n79"}}]
sklearn.pipeline.C37aa0a70b9abb2(n76=sklearn.pipeline.C37aa0a70b99c5e(n77=sklearn.compose._column_transformer.C591010b45c287(n78=sklearn.preprocessing._function_transformer.C591010b45c241)),n79=sklearn.pipeline.C591010b45c401(n80=sklearn.compose._column_transformer.C37aa0a70b9a650(n81=sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8)))(1)_transformer_weightsnull
sklearn.pipeline.C37aa0a70b99c5e(n77=sklearn.compose._column_transformer.C591010b45c287(n78=sklearn.preprocessing._function_transformer.C591010b45c241))(1)_memorynull
sklearn.pipeline.C37aa0a70b99c5e(n77=sklearn.compose._column_transformer.C591010b45c287(n78=sklearn.preprocessing._function_transformer.C591010b45c241))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n77", "step_name": "n77"}}]
sklearn.compose._column_transformer.C591010b45c287(n78=sklearn.preprocessing._function_transformer.C591010b45c241)(1)_n_jobsnull
sklearn.compose._column_transformer.C591010b45c287(n78=sklearn.preprocessing._function_transformer.C591010b45c241)(1)_remainder"drop"
sklearn.compose._column_transformer.C591010b45c287(n78=sklearn.preprocessing._function_transformer.C591010b45c241)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C591010b45c287(n78=sklearn.preprocessing._function_transformer.C591010b45c241)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C591010b45c287(n78=sklearn.preprocessing._function_transformer.C591010b45c241)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n78", "step_name": "n78", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C591010b45c241(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C591010b45c241(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C591010b45c241(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C591010b45c241(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C591010b45c241(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C591010b45c241(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C591010b45c241(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C591010b45c241(1)_validatefalse
sklearn.pipeline.C591010b45c401(n80=sklearn.compose._column_transformer.C37aa0a70b9a650(n81=sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8))(1)_memorynull
sklearn.pipeline.C591010b45c401(n80=sklearn.compose._column_transformer.C37aa0a70b9a650(n81=sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n80", "step_name": "n80"}}]
sklearn.compose._column_transformer.C37aa0a70b9a650(n81=sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8)(1)_n_jobsnull
sklearn.compose._column_transformer.C37aa0a70b9a650(n81=sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8)(1)_remainder"drop"
sklearn.compose._column_transformer.C37aa0a70b9a650(n81=sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37aa0a70b9a650(n81=sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37aa0a70b9a650(n81=sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n81", "step_name": "n81", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37aa0a70b9a4e8(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C37aa0a70b9afb3(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7306 ± 0.0432
Per class
Cross-validation details (10-fold Crossvalidation)
0.6428 ± 0.0456
Per class
Cross-validation details (10-fold Crossvalidation)
0.2489 ± 0.0735
Cross-validation details (10-fold Crossvalidation)
-0.3388 ± 0.0643
Cross-validation details (10-fold Crossvalidation)
0.4201 ± 0.0163
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.7684 ± 0.037
Per class
Cross-validation details (10-fold Crossvalidation)
0.615 ± 0.0471
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.615 ± 0.0471
Per class
Cross-validation details (10-fold Crossvalidation)
1.1572 ± 0.0455
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4603 ± 0.0145
Cross-validation details (10-fold Crossvalidation)
1.0808 ± 0.0349
Cross-validation details (10-fold Crossvalidation)