Run
10387772

Run 10387772

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 26-08-2019 by Felix Neutatz
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • ComplexityDriven openml-python Sklearn_0.20.3.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.C37aa14a7787aea(n61=sklearn.pipeline.C37aa14a77875bc(n62=s klearn.pipeline.C37aa14a77865a4(n63=sklearn.compose._column_transformer.C37 aa14a7786230(n64=sklearn.preprocessing._function_transformer.C37aa14a7785f9 b)),n65=sklearn.pipeline.C37aa14a7787264(n66=sklearn.compose._column_transf ormer.C37aa14a7787009(n67=sklearn.preprocessing._function_transformer.C37aa 14a7786e84))),n68=fastsklearnfeature.transformations.IdentityTransformation .C37aa14a7787999,c=sklearn.linear_model.logistic.LogisticRegression)(1)Automatically created scikit-learn flow.
sklearn.linear_model.logistic.LogisticRegression(28)_C0.001
sklearn.linear_model.logistic.LogisticRegression(28)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(28)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(28)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(28)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(28)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(28)_multi_class"auto"
sklearn.linear_model.logistic.LogisticRegression(28)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(28)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(28)_random_state7927
sklearn.linear_model.logistic.LogisticRegression(28)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(28)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(28)_verbose0
sklearn.linear_model.logistic.LogisticRegression(28)_warm_startfalse
sklearn.pipeline.C37aa14a7787aea(n61=sklearn.pipeline.C37aa14a77875bc(n62=sklearn.pipeline.C37aa14a77865a4(n63=sklearn.compose._column_transformer.C37aa14a7786230(n64=sklearn.preprocessing._function_transformer.C37aa14a7785f9b)),n65=sklearn.pipeline.C37aa14a7787264(n66=sklearn.compose._column_transformer.C37aa14a7787009(n67=sklearn.preprocessing._function_transformer.C37aa14a7786e84))),n68=fastsklearnfeature.transformations.IdentityTransformation.C37aa14a7787999,c=sklearn.linear_model.logistic.LogisticRegression)(1)_memorynull
sklearn.pipeline.C37aa14a7787aea(n61=sklearn.pipeline.C37aa14a77875bc(n62=sklearn.pipeline.C37aa14a77865a4(n63=sklearn.compose._column_transformer.C37aa14a7786230(n64=sklearn.preprocessing._function_transformer.C37aa14a7785f9b)),n65=sklearn.pipeline.C37aa14a7787264(n66=sklearn.compose._column_transformer.C37aa14a7787009(n67=sklearn.preprocessing._function_transformer.C37aa14a7786e84))),n68=fastsklearnfeature.transformations.IdentityTransformation.C37aa14a7787999,c=sklearn.linear_model.logistic.LogisticRegression)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n61", "step_name": "n61"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n68", "step_name": "n68"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "c", "step_name": "c"}}]
sklearn.pipeline.C37aa14a77875bc(n62=sklearn.pipeline.C37aa14a77865a4(n63=sklearn.compose._column_transformer.C37aa14a7786230(n64=sklearn.preprocessing._function_transformer.C37aa14a7785f9b)),n65=sklearn.pipeline.C37aa14a7787264(n66=sklearn.compose._column_transformer.C37aa14a7787009(n67=sklearn.preprocessing._function_transformer.C37aa14a7786e84)))(1)_n_jobsnull
sklearn.pipeline.C37aa14a77875bc(n62=sklearn.pipeline.C37aa14a77865a4(n63=sklearn.compose._column_transformer.C37aa14a7786230(n64=sklearn.preprocessing._function_transformer.C37aa14a7785f9b)),n65=sklearn.pipeline.C37aa14a7787264(n66=sklearn.compose._column_transformer.C37aa14a7787009(n67=sklearn.preprocessing._function_transformer.C37aa14a7786e84)))(1)_transformer_list[{"oml-python:serialized_object": "component_reference", "value": {"key": "n62", "step_name": "n62"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "n65", "step_name": "n65"}}]
sklearn.pipeline.C37aa14a77875bc(n62=sklearn.pipeline.C37aa14a77865a4(n63=sklearn.compose._column_transformer.C37aa14a7786230(n64=sklearn.preprocessing._function_transformer.C37aa14a7785f9b)),n65=sklearn.pipeline.C37aa14a7787264(n66=sklearn.compose._column_transformer.C37aa14a7787009(n67=sklearn.preprocessing._function_transformer.C37aa14a7786e84)))(1)_transformer_weightsnull
sklearn.pipeline.C37aa14a77865a4(n63=sklearn.compose._column_transformer.C37aa14a7786230(n64=sklearn.preprocessing._function_transformer.C37aa14a7785f9b))(1)_memorynull
sklearn.pipeline.C37aa14a77865a4(n63=sklearn.compose._column_transformer.C37aa14a7786230(n64=sklearn.preprocessing._function_transformer.C37aa14a7785f9b))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n63", "step_name": "n63"}}]
sklearn.compose._column_transformer.C37aa14a7786230(n64=sklearn.preprocessing._function_transformer.C37aa14a7785f9b)(1)_n_jobsnull
sklearn.compose._column_transformer.C37aa14a7786230(n64=sklearn.preprocessing._function_transformer.C37aa14a7785f9b)(1)_remainder"drop"
sklearn.compose._column_transformer.C37aa14a7786230(n64=sklearn.preprocessing._function_transformer.C37aa14a7785f9b)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37aa14a7786230(n64=sklearn.preprocessing._function_transformer.C37aa14a7785f9b)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37aa14a7786230(n64=sklearn.preprocessing._function_transformer.C37aa14a7785f9b)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n64", "step_name": "n64", "argument_1": [1]}}]
sklearn.preprocessing._function_transformer.C37aa14a7785f9b(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37aa14a7785f9b(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37aa14a7785f9b(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37aa14a7785f9b(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa14a7785f9b(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37aa14a7785f9b(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa14a7785f9b(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37aa14a7785f9b(1)_validatefalse
sklearn.pipeline.C37aa14a7787264(n66=sklearn.compose._column_transformer.C37aa14a7787009(n67=sklearn.preprocessing._function_transformer.C37aa14a7786e84))(1)_memorynull
sklearn.pipeline.C37aa14a7787264(n66=sklearn.compose._column_transformer.C37aa14a7787009(n67=sklearn.preprocessing._function_transformer.C37aa14a7786e84))(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "n66", "step_name": "n66"}}]
sklearn.compose._column_transformer.C37aa14a7787009(n67=sklearn.preprocessing._function_transformer.C37aa14a7786e84)(1)_n_jobsnull
sklearn.compose._column_transformer.C37aa14a7787009(n67=sklearn.preprocessing._function_transformer.C37aa14a7786e84)(1)_remainder"drop"
sklearn.compose._column_transformer.C37aa14a7787009(n67=sklearn.preprocessing._function_transformer.C37aa14a7786e84)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.C37aa14a7787009(n67=sklearn.preprocessing._function_transformer.C37aa14a7786e84)(1)_transformer_weightsnull
sklearn.compose._column_transformer.C37aa14a7787009(n67=sklearn.preprocessing._function_transformer.C37aa14a7786e84)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "n67", "step_name": "n67", "argument_1": [0]}}]
sklearn.preprocessing._function_transformer.C37aa14a7786e84(1)_accept_sparsefalse
sklearn.preprocessing._function_transformer.C37aa14a7786e84(1)_check_inversetrue
sklearn.preprocessing._function_transformer.C37aa14a7786e84(1)_func{"oml-python:serialized_object": "function", "value": "fastsklearnfeature.candidates.Identity.identity"}
sklearn.preprocessing._function_transformer.C37aa14a7786e84(1)_inv_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa14a7786e84(1)_inverse_funcnull
sklearn.preprocessing._function_transformer.C37aa14a7786e84(1)_kw_argsnull
sklearn.preprocessing._function_transformer.C37aa14a7786e84(1)_pass_y"deprecated"
sklearn.preprocessing._function_transformer.C37aa14a7786e84(1)_validatefalse
fastsklearnfeature.transformations.IdentityTransformation.C37aa14a7787999(1)_number_parent_featuresnull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7305 ± 0.0429
Per class
Cross-validation details (10-fold Crossvalidation)
0.6415 ± 0.0458
Per class
Cross-validation details (10-fold Crossvalidation)
0.2473 ± 0.0749
Cross-validation details (10-fold Crossvalidation)
-0.3759 ± 0.0598
Cross-validation details (10-fold Crossvalidation)
0.4285 ± 0.0149
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.768 ± 0.0377
Per class
Cross-validation details (10-fold Crossvalidation)
0.6136 ± 0.0474
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.6136 ± 0.0474
Per class
Cross-validation details (10-fold Crossvalidation)
1.1803 ± 0.0416
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.4606 ± 0.0131
Cross-validation details (10-fold Crossvalidation)
1.0816 ± 0.0316
Cross-validation details (10-fold Crossvalidation)