Run
10418715

Run 10418715

Task 3904 (Supervised Classification) jm1 Uploaded 24-11-2019 by Thomas Fan
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.23.dev0.
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(es timator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGrad ientBoostingClassifier)(4)Randomized search on hyper parameters. The search strategy starts evaluating all the candidates with a small amount of resources and iteratively selects the best candidates, using more and more resources. The candidates are sampled at random from the parameter space and the number of sampled candidates is determined by ``n_candidates``.
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_l2_regularization0.0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_learning_rate0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_max_bins255
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_max_depthnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_max_iter100
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_max_leaf_nodes31
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_min_samples_leaf20
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_n_iter_no_changenull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_random_state20757
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_scoringnull
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_tol1e-07
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_validation_fraction0.1
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(6)_warm_startfalse
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_aggressive_eliminationfalse
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_cv5
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_error_scoreNaN
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_force_exhaust_resourcestrue
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_max_resources"auto"
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_min_resources"auto"
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_n_candidates100
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_n_jobs3
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_param_distributions{"l2_regularization": [0, 0.01, 0.1], "learning_rate": [0.01, 0.1, 1], "max_depth": [5, 6, 7, 8, 9, 1000], "max_leaf_nodes": [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], "min_samples_leaf": [2, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]}
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_random_state0
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_ratio3
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_refit{"oml-python:serialized_object": "function", "value": "sklearn.model_selection._search_successive_halving._refit_callable"}
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_resource"n_samples"
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_return_train_scoretrue
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_scoringnull
sklearn.model_selection._search_successive_halving.HalvingRandomSearchCV(estimator=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(4)_verbose1

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

17 Evaluation measures

0.7379 ± 0.0162
Per class
Cross-validation details (10-fold Crossvalidation)
0.7339 ± 0.0064
Per class
Cross-validation details (10-fold Crossvalidation)
0.0476 ± 0.0229
Cross-validation details (10-fold Crossvalidation)
0.0307 ± 0.0128
Cross-validation details (10-fold Crossvalidation)
0.2864 ± 0.002
Cross-validation details (10-fold Crossvalidation)
0.3121 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
10885
Per class
Cross-validation details (10-fold Crossvalidation)
0.787 ± 0.0265
Per class
Cross-validation details (10-fold Crossvalidation)
0.8101 ± 0.0029
Cross-validation details (10-fold Crossvalidation)
0.7087 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
0.8101 ± 0.0029
Per class
Cross-validation details (10-fold Crossvalidation)
0.9175 ± 0.0063
Cross-validation details (10-fold Crossvalidation)
0.395 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.3726 ± 0.0029
Cross-validation details (10-fold Crossvalidation)
0.9431 ± 0.0072
Cross-validation details (10-fold Crossvalidation)