Run
10435781

Run 10435781

Task 22 (Supervised Classification) mfeat-zernike Uploaded 14-01-2020 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(1)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"median"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.svm.classes.SVC(31)_C33.582449129978905
sklearn.svm.classes.SVC(31)_cache_size200
sklearn.svm.classes.SVC(31)_class_weightnull
sklearn.svm.classes.SVC(31)_coef00.4827211643996179
sklearn.svm.classes.SVC(31)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(31)_degree3
sklearn.svm.classes.SVC(31)_gamma1.7998249946148714
sklearn.svm.classes.SVC(31)_kernel"rbf"
sklearn.svm.classes.SVC(31)_max_iter-1
sklearn.svm.classes.SVC(31)_probabilitytrue
sklearn.svm.classes.SVC(31)_random_state1
sklearn.svm.classes.SVC(31)_shrinkingtrue
sklearn.svm.classes.SVC(31)_tol0.001
sklearn.svm.classes.SVC(31)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5344 ± 0.0638
Per class
Cross-validation details (10-fold Crossvalidation)
0.0812
Per class
0.0222 ± 0.0395
Cross-validation details (10-fold Crossvalidation)
0.0065 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.1798 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.18
Cross-validation details (10-fold Crossvalidation)
0.12 ± 0.0356
Cross-validation details (10-fold Crossvalidation)
2000
Per class
Cross-validation details (10-fold Crossvalidation)
0.3615
Per class
0.12 ± 0.0356
Cross-validation details (10-fold Crossvalidation)
3.3219
Cross-validation details (10-fold Crossvalidation)
0.9987 ± 0.0005
Cross-validation details (10-fold Crossvalidation)
0.3
Cross-validation details (10-fold Crossvalidation)
0.2996 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.9988 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.12 ± 0.0356
Cross-validation details (10-fold Crossvalidation)