Run
10437836

Run 10437836

Task 2275 (Supervised Classification) meta_instanceincremental.arff Uploaded 03-03-2020 by Fares Gaaloul
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(Imputer=sklearn.impute.SimpleImputer,fs=sklearn.f eature_selection.univariate_selection.SelectPercentile,rf=sklearn.ensemble. forest.RandomForestClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.impute.SimpleImputer(15)_copytrue
sklearn.impute.SimpleImputer(15)_fill_valuenull
sklearn.impute.SimpleImputer(15)_missing_valuesNaN
sklearn.impute.SimpleImputer(15)_strategy"constant"
sklearn.impute.SimpleImputer(15)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(61)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(61)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(61)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(61)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(61)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(61)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(61)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(61)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(61)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(61)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(61)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(61)_n_estimators100
sklearn.ensemble.forest.RandomForestClassifier(61)_n_jobsnull
sklearn.ensemble.forest.RandomForestClassifier(61)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(61)_random_state31461
sklearn.ensemble.forest.RandomForestClassifier(61)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(61)_warm_startfalse
sklearn.pipeline.Pipeline(Imputer=sklearn.impute.SimpleImputer,fs=sklearn.feature_selection.univariate_selection.SelectPercentile,rf=sklearn.ensemble.forest.RandomForestClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(Imputer=sklearn.impute.SimpleImputer,fs=sklearn.feature_selection.univariate_selection.SelectPercentile,rf=sklearn.ensemble.forest.RandomForestClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "fs", "step_name": "fs"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "rf", "step_name": "rf"}}]
sklearn.feature_selection.univariate_selection.SelectPercentile(4)_percentile80
sklearn.feature_selection.univariate_selection.SelectPercentile(4)_score_func{"oml-python:serialized_object": "function", "value": "sklearn.feature_selection.univariate_selection.f_classif"}

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9653 ± 0.0564
Per class
Cross-validation details (10-fold Crossvalidation)
0.8772
Per class
Cross-validation details (10-fold Crossvalidation)
0.7091 ± 0.368
Cross-validation details (10-fold Crossvalidation)
0.597 ± 0.1581
Cross-validation details (10-fold Crossvalidation)
0.1101 ± 0.0292
Cross-validation details (10-fold Crossvalidation)
0.2277 ± 0.0173
Cross-validation details (10-fold Crossvalidation)
0.8919 ± 0.0894
Cross-validation details (10-fold Crossvalidation)
74
Per class
Cross-validation details (10-fold Crossvalidation)
0.9058
Per class
Cross-validation details (10-fold Crossvalidation)
0.8919 ± 0.0894
Cross-validation details (10-fold Crossvalidation)
1.2388 ± 0.1775
Cross-validation details (10-fold Crossvalidation)
0.4835 ± 0.1193
Cross-validation details (10-fold Crossvalidation)
0.3317 ± 0.0269
Cross-validation details (10-fold Crossvalidation)
0.2075 ± 0.0577
Cross-validation details (10-fold Crossvalidation)
0.6256 ± 0.1657
Cross-validation details (10-fold Crossvalidation)
0.7049
Cross-validation details (10-fold Crossvalidation)