Run
10559318

Run 10559318

Task 37 (Supervised Classification) diabetes Uploaded 12-08-2020 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.cl asses.SVC)(4)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing.data.StandardScaler(35)_copytrue
sklearn.preprocessing.data.StandardScaler(35)_with_meantrue
sklearn.preprocessing.data.StandardScaler(35)_with_stdtrue
sklearn.impute._base.SimpleImputer(11)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(11)_copytrue
sklearn.impute._base.SimpleImputer(11)_fill_valuenull
sklearn.impute._base.SimpleImputer(11)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(11)_strategy"median"
sklearn.impute._base.SimpleImputer(11)_verbose0
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(4)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(4)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(4)_verbosefalse
sklearn.svm.classes.SVC(40)_C55.165796360188416
sklearn.svm.classes.SVC(40)_cache_size200
sklearn.svm.classes.SVC(40)_class_weightnull
sklearn.svm.classes.SVC(40)_coef0-0.4714085691536092
sklearn.svm.classes.SVC(40)_decision_function_shape"ovr"
sklearn.svm.classes.SVC(40)_degree3
sklearn.svm.classes.SVC(40)_gamma0.05043886196568742
sklearn.svm.classes.SVC(40)_kernel"rbf"
sklearn.svm.classes.SVC(40)_max_iter-1
sklearn.svm.classes.SVC(40)_probabilitytrue
sklearn.svm.classes.SVC(40)_random_state1
sklearn.svm.classes.SVC(40)_shrinkingtrue
sklearn.svm.classes.SVC(40)_tol0.001
sklearn.svm.classes.SVC(40)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8017 ± 0.0625
Per class
Cross-validation details (10-fold Crossvalidation)
0.735 ± 0.0599
Per class
Cross-validation details (10-fold Crossvalidation)
0.4038 ± 0.1359
Cross-validation details (10-fold Crossvalidation)
0.2443 ± 0.0552
Cross-validation details (10-fold Crossvalidation)
0.3522 ± 0.0202
Cross-validation details (10-fold Crossvalidation)
0.4545 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.7474 ± 0.0524
Cross-validation details (10-fold Crossvalidation)
768
Per class
Cross-validation details (10-fold Crossvalidation)
0.7403 ± 0.0596
Per class
Cross-validation details (10-fold Crossvalidation)
0.7474 ± 0.0524
Cross-validation details (10-fold Crossvalidation)
0.9331 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.775 ± 0.0444
Cross-validation details (10-fold Crossvalidation)
0.4766 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.4147 ± 0.0246
Cross-validation details (10-fold Crossvalidation)
0.87 ± 0.0519
Cross-validation details (10-fold Crossvalidation)
0.6883 ± 0.0661
Cross-validation details (10-fold Crossvalidation)