Run
10559819

Run 10559819

Task 75219 (Supervised Classification) eeg-eye-state Uploaded 15-03-2021 by Marvin Mavril
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.tree._classes.DecisionTreeClassifier)(9)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.tree._classes.DecisionTreeClassifier(12)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(12)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(12)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(12)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(12)_max_featuresnull
sklearn.tree._classes.DecisionTreeClassifier(12)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(12)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(12)_min_impurity_splitnull
sklearn.tree._classes.DecisionTreeClassifier(12)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(12)_min_samples_split2
sklearn.tree._classes.DecisionTreeClassifier(12)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(12)_presort"deprecated"
sklearn.tree._classes.DecisionTreeClassifier(12)_random_state23066
sklearn.tree._classes.DecisionTreeClassifier(12)_splitter"best"
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(9)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(9)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree._classes.DecisionTreeClassifier)(9)_verbosefalse
sklearn.impute._base.SimpleImputer(21)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(21)_copytrue
sklearn.impute._base.SimpleImputer(21)_fill_valuenull
sklearn.impute._base.SimpleImputer(21)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(21)_strategy"mean"
sklearn.impute._base.SimpleImputer(21)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8245
Per class
Cross-validation details (33% Holdout set)
0.8264
Per class
Cross-validation details (33% Holdout set)
0.6494
Cross-validation details (33% Holdout set)
0.6478
Cross-validation details (33% Holdout set)
0.1736
Cross-validation details (33% Holdout set)
0.495
Cross-validation details (33% Holdout set)
0.8264
Cross-validation details (33% Holdout set)
4943
Per class
Cross-validation details (33% Holdout set)
0.8263
Per class
Cross-validation details (33% Holdout set)
0.8264
Cross-validation details (33% Holdout set)
0.9932
Cross-validation details (33% Holdout set)
0.3507
Cross-validation details (33% Holdout set)
0.4976
Cross-validation details (33% Holdout set)
0.4166
Cross-validation details (33% Holdout set)
0.8372
Cross-validation details (33% Holdout set)
0.8245
Cross-validation details (33% Holdout set)