Run
9159014

Run 9159014

Task 167140 (Supervised Classification) dna Uploaded 15-04-2018 by Hilde Weerts
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python Sklearn_0.19.1. study_98
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.Condition alImputer2,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethr eshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=s klearn.ensemble.forest.RandomForestClassifier)(1)Automatically created scikit-learn flow.
sklearn.preprocessing.data.OneHotEncoder(17)_categorical_features[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179]
sklearn.preprocessing.data.OneHotEncoder(17)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(17)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(17)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(17)_sparsetrue
sklearn.feature_selection.variance_threshold.VarianceThreshold(11)_threshold0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_bootstrapfalse
sklearn.ensemble.forest.RandomForestClassifier(32)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(32)_criterion"entropy"
sklearn.ensemble.forest.RandomForestClassifier(32)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(32)_max_features0.2915874821591842
sklearn.ensemble.forest.RandomForestClassifier(32)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(32)_min_impurity_decrease0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_min_impurity_splitnull
sklearn.ensemble.forest.RandomForestClassifier(32)_min_samples_leaf12
sklearn.ensemble.forest.RandomForestClassifier(32)_min_samples_split16
sklearn.ensemble.forest.RandomForestClassifier(32)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(32)_n_estimators300
sklearn.ensemble.forest.RandomForestClassifier(32)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(32)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(32)_random_state65401
sklearn.ensemble.forest.RandomForestClassifier(32)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(32)_warm_startfalse
sklearn.pipeline.Pipeline(imputation=hyperimp.utils.preprocessing.ConditionalImputer2,hotencoding=sklearn.preprocessing.data.OneHotEncoder,variencethreshold=sklearn.feature_selection.variance_threshold.VarianceThreshold,clf=sklearn.ensemble.forest.RandomForestClassifier)(1)_memorynull
hyperimp.utils.preprocessing.ConditionalImputer2(1)_axis0
hyperimp.utils.preprocessing.ConditionalImputer2(1)_categorical_features[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179]
hyperimp.utils.preprocessing.ConditionalImputer2(1)_copytrue
hyperimp.utils.preprocessing.ConditionalImputer2(1)_fill_empty0
hyperimp.utils.preprocessing.ConditionalImputer2(1)_missing_values"NaN"
hyperimp.utils.preprocessing.ConditionalImputer2(1)_strategy"mean"
hyperimp.utils.preprocessing.ConditionalImputer2(1)_strategy_nominal"most_frequent"
hyperimp.utils.preprocessing.ConditionalImputer2(1)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.9881 ± 0.0053
Per class
Cross-validation details (10-fold Crossvalidation)
0.9359 ± 0.013
Per class
Cross-validation details (10-fold Crossvalidation)
0.8961 ± 0.0213
Cross-validation details (10-fold Crossvalidation)
2688.2964 ± 4.7706
Cross-validation details (10-fold Crossvalidation)
0.0808 ± 0.0058
Cross-validation details (10-fold Crossvalidation)
0.41 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
3186
Per class
Cross-validation details (10-fold Crossvalidation)
0.9367 ± 0.0131
Per class
Cross-validation details (10-fold Crossvalidation)
0.9357 ± 0.0132
Cross-validation details (10-fold Crossvalidation)
1.48
Cross-validation details (10-fold Crossvalidation)
0.9357 ± 0.0132
Per class
Cross-validation details (10-fold Crossvalidation)
0.197 ± 0.014
Cross-validation details (10-fold Crossvalidation)
0.4527 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.1812 ± 0.0153
Cross-validation details (10-fold Crossvalidation)
0.4002 ± 0.0337
Cross-validation details (10-fold Crossvalidation)