Data
Filter results by:
Datasets of Data And Story Library, project illustrating use of basic statistic methods, converted to arff format by Hakan Kjellerstrand. Source: TunedIT: http://tunedit.org/repo/DASL DASL file…
3 runs0 likes2 downloads2 reach6 impact
50 instances - 6 features - 0 classes - 0 missing values
simple engine data
52 runs0 likes6 downloads6 reach5 impact
383 instances - 6 features - 3 classes - 0 missing values
The first 5 variables are all blood tests which are thought to be sensitive to liver disorders that might arise from excessive alcohol consumption. Each line in the dataset constitutes the record of a…
191 runs2 likes30 downloads32 reach4 impact
345 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes2 downloads2 reach6 impact
250 instances - 6 features - 0 classes - 0 missing values
Auto MPG (6 variables) dataset The data concerns city-cycle fuel consumption in miles per gallon (Mpg), to be predicted in terms of 1 multivalued discrete and 5 continuous attributes (two multivalued…
0 runs0 likes0 downloads0 reach1 impact
392 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes0 downloads0 reach6 impact
1000 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes0 downloads0 reach6 impact
100 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes0 downloads0 reach6 impact
250 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes0 downloads0 reach6 impact
250 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes0 downloads0 reach6 impact
500 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes1 downloads1 reach6 impact
1000 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes1 downloads1 reach6 impact
1000 instances - 6 features - 0 classes - 0 missing values
This file contains data from Regression Analysis By Example, 2nd Edition, by Samprit Chatterjee and Bertram Price, John Wiley, 1991. Data sets have names of the form 'rabe.xxx' where xxx is the page…
0 runs0 likes0 downloads0 reach6 impact
66 instances - 6 features - 0 classes - 0 missing values
This S dump contains 22 data sets from the book Visualizing Data published by Hobart Press (books@hobart.com). The dump was created by data.dump() and can be read back into S by data.restore(). The…
0 runs0 likes0 downloads0 reach6 impact
73 instances - 6 features - 0 classes - 0 missing values
File README ----------- chscase A collection of the data sets used in the book "A Casebook for a First Course in Statistics and Data Analysis," by Samprit Chatterjee, Mark S. Handcock and Jeffrey S.…
14 runs0 likes0 downloads0 reach6 impact
526 instances - 6 features - 0 classes - 0 missing values
This file contains data from Regression Analysis By Example, 2nd Edition, by Samprit Chatterjee and Bertram Price, John Wiley, 1991. Data sets have names of the form 'rabe.xxx' where xxx is the page…
0 runs0 likes0 downloads0 reach6 impact
50 instances - 6 features - 0 classes - 0 missing values
Contains 110 data sets from the book 'The Statistical Sleuth' by Fred Ramsey and Dan Schafer; Duxbury Press, 1997. (schafer@stat.orst.edu) [14/Oct/97] (172k) Note: description taken from this web…
0 runs0 likes0 downloads0 reach6 impact
62 instances - 6 features - 0 classes - 0 missing values
A shar archive of data from the book Data Analysis: An Introduction(1992) Prentice Hall bu Jeff Witmer. Submitted by Jeff Witmer (fwitmer@ocvaxa.cc.oberlin.edu) [28/Jun/94] (29 kbytes) Note:…
2 runs0 likes0 downloads0 reach6 impact
50 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes0 downloads0 reach6 impact
100 instances - 6 features - 0 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
2 runs0 likes0 downloads0 reach6 impact
163 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes0 downloads0 reach6 impact
500 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes1 downloads1 reach6 impact
500 instances - 6 features - 0 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
53 runs0 likes2 downloads2 reach10 impact
92 instances - 6 features - 0 classes - 26 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes1 downloads1 reach6 impact
500 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes0 downloads0 reach6 impact
250 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes0 downloads0 reach6 impact
100 instances - 6 features - 0 classes - 0 missing values
The Friedman datasets are 80 artificially generated datasets originating from: J.H. Friedman (1999). Stochastic Gradient Boosting The dataset names are coded as…
0 runs0 likes1 downloads1 reach6 impact
1000 instances - 6 features - 0 classes - 0 missing values
17x17x2x2 tables of counts in GLIM-ready format used for the analyses in Biblarz, Timothy J., and Adrian E. Raftery. 1993. "The Effects of Family Disruption on Social Mobility." American Sociological…
3 runs0 likes1 downloads1 reach7 impact
1156 instances - 6 features - 0 classes - 0 missing values
Source: http://www.ijcaonline.org/archives/volume47/number18/7291-0509 Data Set Information: In this paper, we look for to recognize the causes of users tend to cyber space in Kohkiloye and Boyer…
373 runs0 likes7 downloads7 reach7 impact
100 instances - 6 features - 2 classes - 0 missing values
__Changes w.r.t. version 1: renamed variables such that they match description.__ ### Dataset: Wilt Data Set ### Abstract: High-resolution Remote Sensing data set (Quickbird). Small number of training…
10946 runs0 likes1 downloads1 reach14 impact
4839 instances - 6 features - 2 classes - 0 missing values
The aim of this dataset is to distinguish between nasal (class 0) and oral sounds (class 1). Five different attributes were chosen to characterize each vowel: they are the amplitudes of the five first…
218302 runs5 likes34 downloads39 reach23 impact
5404 instances - 6 features - 2 classes - 0 missing values
test
0 runs0 likes0 downloads0 reach0 impact
60197 instances - 6 features - classes - 42138 missing values
test
0 runs0 likes0 downloads0 reach0 impact
60197 instances - 6 features - classes - 42138 missing values
test
0 runs0 likes0 downloads0 reach0 impact
60197 instances - 6 features - classes - 42138 missing values
test
0 runs0 likes0 downloads0 reach0 impact
60197 instances - 6 features - classes - 42138 missing values
test
0 runs0 likes0 downloads0 reach0 impact
60197 instances - 6 features - classes - 128136 missing values
* Title: User Knowledge Modeling Data Set * Abstract: It is the real dataset about the students' knowledge status about the subject of Electrical DC Machines. The dataset had been obtained from Ph.D.…
153 runs1 likes8 downloads9 reach10 impact
403 instances - 6 features - 5 classes - 0 missing values
test
0 runs0 likes0 downloads0 reach0 impact
60197 instances - 6 features - classes - 128136 missing values
DESCRIPTIVE ABSTRACT: The data set contains the oral, written and combined test scores for 2003 New Haven Fire Department promotion exams. The Race and Position for each test taker are also given.…
0 runs0 likes0 downloads0 reach0 impact
118 instances - 6 features - 2 classes - 0 missing values
newtest3
0 runs0 likes0 downloads0 reach0 impact
2 instances - 6 features - classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
822 runs0 likes7 downloads7 reach13 impact
250 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
594 runs0 likes8 downloads8 reach13 impact
1000 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
866 runs1 likes11 downloads12 reach14 impact
7129 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
631 runs0 likes7 downloads7 reach13 impact
1000 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
736 runs0 likes5 downloads5 reach12 impact
92 instances - 6 features - 2 classes - 26 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
35 runs0 likes2 downloads2 reach12 impact
23 instances - 6 features - 3 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
854 runs0 likes7 downloads7 reach13 impact
250 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1111 runs0 likes9 downloads9 reach12 impact
100 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
853 runs0 likes7 downloads7 reach13 impact
250 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
789 runs0 likes8 downloads8 reach12 impact
73 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
780 runs0 likes7 downloads7 reach12 impact
66 instances - 6 features - 2 classes - 0 missing values
1. Title: Teaching Assistant Evaluation 2. Sources: (a) Collector: Wei-Yin Loh (Department of Statistics, UW-Madison) (b) Donor: Tjen-Sien Lim (limt@stat.wisc.edu) (b) Date: June 7, 1997 3. Past…
2028 runs0 likes13 downloads13 reach7 impact
151 instances - 6 features - 3 classes - 0 missing values
Data on educational transitions for a sample of 500 Irish schoolchildren aged 11 in 1967. The data were collected by Greaney and Kelleghan (1984), and reanalyzed by Raftery and Hout (1985, 1993). ###…
16022 runs0 likes16 downloads16 reach23 impact
500 instances - 6 features - 2 classes - 32 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1013 runs0 likes8 downloads8 reach13 impact
163 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
708 runs0 likes5 downloads5 reach12 impact
62 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
777 runs0 likes8 downloads8 reach13 impact
500 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1136 runs0 likes8 downloads8 reach12 impact
100 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
117 runs0 likes4 downloads4 reach12 impact
50 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
806 runs0 likes8 downloads8 reach13 impact
500 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1119 runs0 likes8 downloads8 reach12 impact
100 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
786 runs0 likes7 downloads7 reach13 impact
500 instances - 6 features - 2 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
581 runs0 likes5 downloads5 reach12 impact
400 instances - 6 features - 4 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
598 runs0 likes8 downloads8 reach13 impact
1000 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
754 runs0 likes6 downloads6 reach12 impact
38 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
759 runs0 likes6 downloads6 reach12 impact
50 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1767 runs0 likes14 downloads14 reach13 impact
3848 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
779 runs0 likes7 downloads7 reach13 impact
500 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
624 runs0 likes8 downloads8 reach13 impact
1000 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1173 runs0 likes8 downloads8 reach12 impact
100 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
847 runs0 likes7 downloads7 reach13 impact
250 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
113 runs0 likes3 downloads3 reach13 impact
366 instances - 6 features - 2 classes - 1 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1899 runs0 likes13 downloads13 reach13 impact
1156 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
757 runs0 likes8 downloads8 reach13 impact
400 instances - 6 features - 2 classes - 0 missing values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This is a PROMISE Software Engineering Repository data set made publicly available in order to encourage repeatable,…
109963 runs1 likes19 downloads20 reach25 impact
15545 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
1032 runs0 likes7 downloads7 reach13 impact
151 instances - 6 features - 2 classes - 0 missing values
This S dump contains 22 data sets from the book Visualizing Data published by Hobart Press (books@hobart.com). The dump was created by data.dump() and can be read back into S by data.restore(). The…
2 runs0 likes1 downloads1 reach5 impact
8641 instances - 5 features - 0 classes - 0 missing values
1. Title: Employee Selection (Ordinal ESL) 2. Source Informaion: Donor: Arie Ben David MIS, Dept. of Technology Management Holon Academic Inst. of Technology 52 Golomb St. Holon 58102 Israel…
0 runs0 likes0 downloads0 reach5 impact
488 instances - 5 features - 0 classes - 0 missing values
Datasets of Data And Story Library, project illustrating use of basic statistic methods, converted to arff format by Hakan Kjellerstrand. Source: TunedIT: http://tunedit.org/repo/DASL DASL file…
0 runs0 likes1 downloads1 reach5 impact
39 instances - 5 features - 0 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
0 runs0 likes0 downloads0 reach5 impact
48 instances - 5 features - 0 classes - 0 missing values
Data originating from the book "Analyzing Categorical Data" by Jeffrey S. Simonoff.
1085 runs0 likes9 downloads9 reach7 impact
50 instances - 5 features - 2 classes - 0 missing values
MyExampleIris
32 runs0 likes1 downloads1 reach11 impact
150 instances - 5 features - 3 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
0 runs0 likes2 downloads2 reach4 impact
366 instances - 5 features - classes - 2 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - 3 classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - 3 classes - 0 missing values
The weather problem is a tiny dataset that we will use repeatedly to illustrate machine learning methods. Entirely fictitious, it supposedly concerns the conditions that are suitable for playing some…
0 runs0 likes0 downloads0 reach1 impact
14 instances - 5 features - 2 classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - 3 classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - 3 classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - 3 classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - 3 classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - 3 classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - 3 classes - 0 missing values
iris with ignored features Sepal.Width and Petal.Length
0 runs0 likes0 downloads0 reach1 impact
150 instances - 5 features - classes - 0 missing values