Data
Filter results by:
Andrew V Uzilov, Joshua M Keegan, and David H Mathews. Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change. BMC Bioinformatics, 7(173), 2006. This…
31 runs0 likes10 downloads10 reach7 impact
488565 instances - 9 features - 2 classes - 0 missing values
This is the poker dataset, retrieved 2013-11-14 from the libSVM site. Additional to the preprocessing done there (see LibSVM site for details), this dataset was created as follows: -join test and…
23 runs0 likes17 downloads17 reach7 impact
1025010 instances - 11 features - 2 classes - 0 missing values
Vehicle classification in distributed sensor networks. Journal of Parallel and Distributed Computing, 64(7):826-838, July 2004. This is the SensIT Vehicle (combined) dataset, retrieved 2013-11-14 from…
403 runs0 likes22 downloads22 reach8 impact
98528 instances - 101 features - 2 classes - 0 missing values
White Clover Persistence Trials Data source: Ian Tarbotton AgResearch, Whatawhata Research Centre, Hamilton, New Zealand The objective was to determine the mechanisms which influence the persistence…
858 runs0 likes4 downloads4 reach7 impact
63 instances - 32 features - 4 classes - 0 missing values
This is an artificial data set with dependencies between the attribute values. The cases are generated using the following method: X1 : uniformly distributed over [-5,5] X2 : uniformly distributed…
3 runs1 likes5 downloads6 reach5 impact
40768 instances - 11 features - 0 classes - 0 missing values
Data originating from the book "Analyzing Categorical Data" by Jeffrey S. Simonoff.
1085 runs0 likes9 downloads9 reach7 impact
50 instances - 5 features - 2 classes - 0 missing values
Fast training of support vector machines using sequential minimal optimization. In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods - Support…
564 runs0 likes11 downloads11 reach15 impact
36974 instances - 124 features - 2 classes - 0 missing values
Once upon a time, in July 1991, the monks of Corsendonk Priory were faced with a school held in their priory, namely the 2nd European Summer School on Machine Learning. After listening more than one…
358455 runs1 likes16 downloads17 reach29 impact
556 instances - 7 features - 2 classes - 0 missing values
Once upon a time, in July 1991, the monks of Corsendonk Priory were faced with a school held in their priory, namely the 2nd European Summer School on Machine Learning. After listening more than one…
108672 runs0 likes13 downloads13 reach25 impact
554 instances - 7 features - 2 classes - 0 missing values
SPECT heart data This is a merged version of the separate train and test set which are usually distributed. On OpenML this train-test split can be found as one of the possible tasks. Sources: --…
1296 runs1 likes12 downloads13 reach8 impact
267 instances - 23 features - 2 classes - 0 missing values
SPECTF heart data This is a merged version of the separate train and test set which are usually distributed. On OpenML this train-test split can be found as one of the possible tasks. NOTE: See the…
1103 runs0 likes12 downloads12 reach7 impact
349 instances - 45 features - 2 classes - 0 missing values
Grass Grubs and Damage Ranking Data source: R. J. Townsend AgResearch, Lincoln, New Zealand Grass grubs are one of the major insect pests of pasture in Canterbury and can cause severe pasture damage…
988 runs0 likes8 downloads8 reach7 impact
155 instances - 9 features - 4 classes - 0 missing values
Pasture Production Data source: Dave Barker AgResearch Grasslands, Palmerston North, New Zealand The objective was to predict pasture production from a variety of biophysical factors. Vegetation and…
878 runs0 likes6 downloads6 reach7 impact
36 instances - 23 features - 3 classes - 0 missing values
Hayes-Roth Database This is a merged version of the separate train and test set which are usually distributed. On OpenML this train-test split can be found as one of the possible tasks. Source…
380 runs0 likes3 downloads3 reach16 impact
160 instances - 5 features - 3 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
13 instances - 22 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
5 instances - 1143 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
16 instances - 24 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes2 downloads2 reach5 impact
195 instances - 33 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
9 instances - 1143 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
10 instances - 1143 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
10 instances - 1143 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
6 instances - 1143 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
34 instances - 1143 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
15 instances - 10 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
31 instances - 54 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs1 likes0 downloads1 reach5 impact
8885 instances - 267 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
13 instances - 1143 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
80 instances - 113 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
13 instances - 1143 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes1 downloads1 reach5 impact
20 instances - 10 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes1 downloads1 reach5 impact
16 instances - 34 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
22 instances - 40 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
19 instances - 10 features - 0 classes - 0 missing values
This is one of 41 drug design datasets. The datasets with 1143 features are formed using Adriana.Code software (www.molecular-networks.com/software/adrianacode). The molecules and outputs are taken…
0 runs0 likes0 downloads0 reach5 impact
274 instances - 1143 features - 0 classes - 0 missing values
Datasets for `Pattern Recognition and Neural Networks' by B.D. Ripley ===================================================================== Cambridge University Press (1996) ISBN 0-521-46086-7 The…
41 runs0 likes2 downloads2 reach6 impact
27 instances - 4 features - 4 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
22475 runs0 likes7 downloads7 reach26 impact
841 instances - 71 features - 4 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
692 runs0 likes6 downloads6 reach6 impact
83 instances - 4 features - 2 classes - 0 missing values
GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality…
2834 runs0 likes3 downloads3 reach16 impact
1545 instances - 10937 features - 2 classes - 0 missing values
GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality…
79 runs0 likes2 downloads2 reach7 impact
322 instances - 10937 features - 2 classes - 0 missing values
GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality…
66 runs0 likes1 downloads1 reach7 impact
386 instances - 10937 features - 2 classes - 0 missing values
GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality…
65 runs0 likes1 downloads1 reach7 impact
185 instances - 10937 features - 2 classes - 0 missing values
GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality…
2855 runs0 likes8 downloads8 reach16 impact
542 instances - 10937 features - 2 classes - 0 missing values
GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality…
2862 runs0 likes7 downloads7 reach16 impact
1545 instances - 10937 features - 2 classes - 0 missing values
No data.
697 runs0 likes7 downloads7 reach7 impact
320 instances - 9 features - 2 classes - 0 missing values
Airlines Dataset Inspired in the regression dataset from Elena Ikonomovska. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure.
287 runs0 likes25 downloads25 reach7 impact
539383 instances - 8 features - 2 classes - 0 missing values
GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality…
78 runs0 likes2 downloads2 reach6 impact
130 instances - 10937 features - 2 classes - 0 missing values
GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality…
72 runs1 likes6 downloads7 reach8 impact
1545 instances - 10937 features - 2 classes - 0 missing values
GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality…
78 runs0 likes2 downloads2 reach7 impact
363 instances - 10937 features - 2 classes - 0 missing values
GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality…
77 runs0 likes2 downloads2 reach7 impact
329 instances - 10937 features - 2 classes - 0 missing values
GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality…
2841 runs0 likes3 downloads3 reach16 impact
630 instances - 10937 features - 2 classes - 0 missing values
GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality…
59 runs0 likes6 downloads6 reach8 impact
1545 instances - 10937 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
779 runs0 likes8 downloads8 reach7 impact
559 instances - 5 features - 2 classes - 0 missing values
Datasets for `Pattern Recognition and Neural Networks' by B.D. Ripley ===================================================================== Cambridge University Press (1996) ISBN 0-521-46086-7 The…
640 runs0 likes6 downloads6 reach6 impact
214 instances - 10 features - 6 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
135 runs0 likes9 downloads9 reach7 impact
3190 instances - 62 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
143 runs1 likes10 downloads11 reach7 impact
531 instances - 103 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
1032 runs0 likes7 downloads7 reach7 impact
151 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
173 runs0 likes6 downloads6 reach14 impact
106 instances - 59 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
772 runs0 likes14 downloads14 reach7 impact
2310 instances - 20 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
652 runs0 likes15 downloads15 reach7 impact
12960 instances - 9 features - 2 classes - 0 missing values
One of the data sets used in the book "Analyzing Categorical Data" by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. Further details concerning the book, including information on statistical…
2 runs0 likes0 downloads0 reach5 impact
108 instances - 5 features - 0 classes - 0 missing values
Data on the homicide rate in Detroit for the years 1961-1973. This is the data set called DETROIT in the book 'Subset selection in regression' by Alan J. Miller published in the Chapman & Hall series…
0 runs0 likes0 downloads0 reach5 impact
13 instances - 14 features - 0 classes - 0 missing values
Data on the recurrence times to infection, at the point of insertion of the catheter, for kidney patients using portable dialysis equipment. Catheters may be removed for reasons other than infection,…
2 runs0 likes0 downloads0 reach5 impact
76 instances - 7 features - 0 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
2 runs0 likes0 downloads0 reach5 impact
450 instances - 4 features - 0 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
2 runs0 likes0 downloads0 reach5 impact
475 instances - 4 features - 0 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
2 runs0 likes0 downloads0 reach5 impact
475 instances - 4 features - 0 classes - 0 missing values
A family of datasets synthetically generated from a simulation of how bank-customers choose their banks. Tasks are based on predicting the fraction of bank customers who leave the bank because of full…
0 runs0 likes1 downloads1 reach5 impact
8192 instances - 33 features - 0 classes - 0 missing values
Short Summary: Lists estimates of the percentage of body fat determined by underwater weighing and various body circumference measurements for 252 men. Classroom use of this data set: This data set…
0 runs0 likes4 downloads4 reach7 impact
252 instances - 15 features - 0 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
511 runs0 likes5 downloads5 reach7 impact
185 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
866 runs1 likes11 downloads12 reach8 impact
7129 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
780 runs0 likes6 downloads6 reach6 impact
70 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
784 runs0 likes7 downloads7 reach7 impact
500 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
621 runs0 likes8 downloads8 reach7 impact
1000 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
796 runs0 likes8 downloads8 reach7 impact
8192 instances - 9 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
970 runs0 likes8 downloads8 reach6 impact
100 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1086 runs0 likes8 downloads8 reach6 impact
132 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
773 runs0 likes6 downloads6 reach6 impact
100 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
773 runs0 likes11 downloads11 reach7 impact
8641 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
512 runs0 likes7 downloads7 reach6 impact
130 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
842 runs0 likes9 downloads9 reach7 impact
323 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
775 runs0 likes6 downloads6 reach7 impact
500 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
112 runs0 likes5 downloads5 reach6 impact
42 instances - 17 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
121 runs0 likes6 downloads6 reach6 impact
46 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
114 runs0 likes5 downloads5 reach6 impact
70 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
729 runs0 likes5 downloads5 reach6 impact
93 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
118 runs0 likes5 downloads5 reach6 impact
50 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
787 runs0 likes7 downloads7 reach6 impact
73 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
778 runs0 likes7 downloads7 reach6 impact
66 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1164 runs0 likes7 downloads7 reach7 impact
222 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
813 runs0 likes7 downloads7 reach7 impact
500 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
817 runs0 likes8 downloads8 reach7 impact
400 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
767 runs0 likes8 downloads8 reach7 impact
189 instances - 10 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
117 runs0 likes7 downloads7 reach6 impact
50 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
814 runs0 likes7 downloads7 reach7 impact
500 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
765 runs0 likes8 downloads8 reach6 impact
76 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
760 runs0 likes6 downloads6 reach6 impact
88 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
774 runs0 likes9 downloads9 reach7 impact
559 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
812 runs0 likes7 downloads7 reach7 impact
559 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
769 runs0 likes7 downloads7 reach7 impact
559 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
802 runs0 likes14 downloads14 reach7 impact
3848 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
775 runs0 likes6 downloads6 reach7 impact
250 instances - 51 features - 2 classes - 0 missing values