Data
Filter results by:
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
791 runs0 likes7 downloads7 reach7 impact
400 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
643 runs0 likes8 downloads8 reach7 impact
1000 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
817 runs0 likes8 downloads8 reach7 impact
400 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
618 runs0 likes11 downloads11 reach7 impact
40768 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
764 runs0 likes6 downloads6 reach7 impact
400 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
779 runs0 likes7 downloads7 reach7 impact
400 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1038 runs0 likes8 downloads8 reach6 impact
147 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
847 runs0 likes7 downloads7 reach7 impact
250 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
624 runs0 likes8 downloads8 reach7 impact
1000 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
103 runs0 likes5 downloads5 reach6 impact
107 instances - 13 features - 2 classes - 71 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
104 runs0 likes6 downloads6 reach7 impact
379 instances - 9 features - 2 classes - 1368 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
737 runs0 likes9 downloads9 reach7 impact
3772 instances - 30 features - 2 classes - 6064 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
106 runs0 likes5 downloads5 reach6 impact
76 instances - 46 features - 2 classes - 22 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
752 runs0 likes7 downloads7 reach7 impact
339 instances - 18 features - 2 classes - 225 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
169 runs0 likes8 downloads8 reach8 impact
600 instances - 62 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
733 runs0 likes9 downloads9 reach8 impact
7485 instances - 56 features - 2 classes - 32427 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
104 runs0 likes3 downloads3 reach6 impact
57 instances - 12 features - 2 classes - 1 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
721 runs0 likes5 downloads5 reach7 impact
226 instances - 70 features - 2 classes - 317 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
772 runs0 likes7 downloads7 reach6 impact
214 instances - 10 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
748 runs0 likes8 downloads8 reach6 impact
148 instances - 19 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
792 runs0 likes8 downloads8 reach7 impact
2000 instances - 48 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
792 runs0 likes10 downloads10 reach7 impact
214 instances - 10 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
732 runs0 likes5 downloads5 reach6 impact
63 instances - 32 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
777 runs0 likes8 downloads8 reach7 impact
625 instances - 5 features - 2 classes - 0 missing values
1. Title: Chess End-Game -- King+Rook versus King+Pawn on a7 (usually abbreviated KRKPA7). The pawn on a7 means it is one square away from queening. It is the King+Rook's side (white) to move. 2.…
270415 runs0 likes36 downloads36 reach3 impact
3196 instances - 37 features - 2 classes - 0 missing values
Date: Tue, 15 Nov 88 15:44:08 EST From: stan To: aha@ICS.UCI.EDU 1. Title: Final settlements in labor negotitions in Canadian industry 2. Source Information -- Creators:…
7681 runs0 likes16 downloads16 reach2 impact
57 instances - 17 features - 2 classes - 326 missing values
Current dataset was adapted to ARFF format from the UCI version. Sample code ID's were removed. ! Note that there is also a related Breast Cancer Wisconsin (Diagnosis) Data Set with a different set of…
25224 runs1 likes18 downloads19 reach1 impact
699 instances - 10 features - 2 classes - 16 missing values
Fast training of support vector machines using sequential minimal optimization. In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods - Support…
564 runs0 likes11 downloads11 reach15 impact
36974 instances - 124 features - 2 classes - 0 missing values
Vehicle classification in distributed sensor networks. Journal of Parallel and Distributed Computing, 64(7):826-838, July 2004. This is the SensIT Vehicle (combined) dataset, retrieved 2013-11-14 from…
403 runs0 likes22 downloads22 reach8 impact
98528 instances - 101 features - 2 classes - 0 missing values
SPECT heart data This is a merged version of the separate train and test set which are usually distributed. On OpenML this train-test split can be found as one of the possible tasks. Sources: --…
1296 runs1 likes12 downloads13 reach8 impact
267 instances - 23 features - 2 classes - 0 missing values
SPECTF heart data This is a merged version of the separate train and test set which are usually distributed. On OpenML this train-test split can be found as one of the possible tasks. NOTE: See the…
1103 runs0 likes12 downloads12 reach7 impact
349 instances - 45 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
772 runs0 likes7 downloads7 reach7 impact
500 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
1086 runs0 likes8 downloads8 reach6 impact
132 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
773 runs0 likes6 downloads6 reach6 impact
100 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
104 runs0 likes7 downloads7 reach7 impact
1302 instances - 35 features - 2 classes - 7830 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
512 runs0 likes7 downloads7 reach6 impact
130 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
842 runs0 likes9 downloads9 reach7 impact
323 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
121 runs0 likes6 downloads6 reach6 impact
46 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
114 runs0 likes5 downloads5 reach6 impact
70 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
775 runs0 likes6 downloads6 reach7 impact
500 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
112 runs0 likes5 downloads5 reach6 impact
42 instances - 17 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
617 runs0 likes11 downloads11 reach7 impact
1000 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
817 runs0 likes7 downloads7 reach7 impact
250 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
813 runs0 likes7 downloads7 reach7 impact
662 instances - 4 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
810 runs0 likes6 downloads6 reach6 impact
100 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
773 runs0 likes11 downloads11 reach7 impact
8641 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
113 runs0 likes4 downloads4 reach6 impact
40 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
736 runs1 likes5 downloads6 reach7 impact
452 instances - 280 features - 2 classes - 408 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
728 runs0 likes7 downloads7 reach7 impact
2000 instances - 241 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
842 runs0 likes7 downloads7 reach7 impact
155 instances - 9 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
754 runs0 likes10 downloads10 reach8 impact
8844 instances - 57 features - 2 classes - 34843 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
676 runs0 likes13 downloads13 reach7 impact
10992 instances - 17 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
140 runs0 likes6 downloads6 reach7 impact
194 instances - 30 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
1147 runs0 likes10 downloads10 reach6 impact
138 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
723 runs0 likes6 downloads6 reach7 impact
366 instances - 35 features - 2 classes - 8 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
815 runs0 likes8 downloads8 reach7 impact
336 instances - 8 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
794 runs0 likes9 downloads9 reach7 impact
2000 instances - 65 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
781 runs0 likes12 downloads12 reach7 impact
5473 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
722 runs0 likes6 downloads6 reach7 impact
683 instances - 36 features - 2 classes - 2337 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
757 runs0 likes8 downloads8 reach7 impact
400 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
774 runs0 likes9 downloads9 reach7 impact
797 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
744 runs0 likes7 downloads7 reach6 impact
72 instances - 4 features - 2 classes - 0 missing values
Compilation of promoters with known transcriptional start points for E. coli genes. The task is to recognize promoters in strings that represent nucleotides (one of A, G, T, or C). A promoter is a…
138 runs1 likes9 downloads10 reach2 impact
106 instances - 59 features - 2 classes - 0 missing values
Prediction task is to determine whether a person makes over 50K a year. Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the…
2671 runs1 likes30 downloads31 reach2 impact
48842 instances - 15 features - 2 classes - 6465 missing values
No data.
863 runs0 likes11 downloads11 reach1 impact
39366 instances - 10 features - 2 classes - 0 missing values
No data.
1457 runs0 likes12 downloads12 reach1 impact
39366 instances - 10 features - 2 classes - 0 missing values
The dataset (originally named ELEC2) contains 45,312 instances dated from 7 May 1996 to 5 December 1998. Each example of the dataset refers to a period of 30 minutes, i.e. there are 48 instances for…
106103 runs3 likes30 downloads33 reach2 impact
45312 instances - 9 features - 2 classes - 0 missing values
1. Title: Space Shuttle Autolanding Domain 2. Sources: (a) Original source: unknown -- NASA: Mr. Roger Burke's autolander design team (b) Donor: Bojan Cestnik Jozef Stefan Institute Jamova 39 61000…
1466 runs0 likes9 downloads9 reach1 impact
15 instances - 7 features - 2 classes - 26 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
1028 runs0 likes8 downloads8 reach6 impact
132 instances - 4 features - 2 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
1114 runs0 likes9 downloads9 reach6 impact
120 instances - 4 features - 2 classes - 0 missing values
analcatdata A collection of data sets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff, Springer-Verlag, New York, 2003. The submission consists of a zip file containing two…
886 runs0 likes8 downloads8 reach7 impact
264 instances - 5 features - 2 classes - 0 missing values
Data on educational transitions for a sample of 500 Irish schoolchildren aged 11 in 1967. The data were collected by Greaney and Kelleghan (1984), and reanalyzed by Raftery and Hout (1985, 1993). ###…
16022 runs0 likes15 downloads15 reach17 impact
500 instances - 6 features - 2 classes - 32 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
807 runs0 likes7 downloads7 reach7 impact
500 instances - 51 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
110 runs0 likes5 downloads5 reach6 impact
42 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
806 runs0 likes6 downloads6 reach7 impact
250 instances - 26 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
760 runs0 likes13 downloads13 reach7 impact
1156 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
814 runs0 likes7 downloads7 reach7 impact
500 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
744 runs0 likes5 downloads5 reach6 impact
130 instances - 10 features - 2 classes - 97 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
765 runs0 likes8 downloads8 reach6 impact
76 instances - 7 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
760 runs0 likes6 downloads6 reach6 impact
88 instances - 3 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
117 runs0 likes7 downloads7 reach6 impact
50 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
774 runs0 likes9 downloads9 reach7 impact
559 instances - 5 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
791 runs0 likes6 downloads6 reach7 impact
250 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
797 runs0 likes7 downloads7 reach7 impact
500 instances - 11 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
118 runs0 likes3 downloads3 reach7 impact
228 instances - 10 features - 2 classes - 20 missing values
Embryonal tumours of the central nervous system Prediction of Central Nervous System Embryonal Tumour Outcome based on Gene Expression. Nature, VOL 415, pp. 436-442, 24 January 2002. Scott L. Pomeroy,…
343 runs0 likes6 downloads6 reach6 impact
60 instances - 7130 features - 2 classes - 0 missing values
Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science, VOL 286, pp. 531-537, 15 October 1999. Web supplement to the article T.R. Golub, D. K.…
451 runs0 likes12 downloads12 reach6 impact
72 instances - 7130 features - 2 classes - 0 missing values
No data.
496 runs0 likes6 downloads6 reach13 impact
45 instances - 4027 features - 2 classes - 5948 missing values
Dataset from the MLRR repository: http://axon.cs.byu.edu:5000/ More infos: https://archive.ics.uci.edu/ml/datasets/Musk+(Version+2)
82516 runs1 likes19 downloads20 reach23 impact
6598 instances - 170 features - 2 classes - 0 missing values
Donated by P. Savicky, Institute of Computer Science, AS of CR, Czech Republic Methods for multidimensional event classification: a case study using images from a Cherenkov gamma-ray telescope.…
64659 runs1 likes28 downloads29 reach17 impact
19020 instances - 12 features - 2 classes - 0 missing values
Dataset from the MLRR repository: http://axon.cs.byu.edu:5000/
180 runs0 likes5 downloads5 reach14 impact
294 instances - 12 features - 2 classes - 0 missing values
Dataset from the MLRR repository: http://axon.cs.byu.edu:5000/
68 runs0 likes7 downloads7 reach15 impact
32561 instances - 16 features - 2 classes - 4262 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
102 runs0 likes3 downloads3 reach7 impact
527 instances - 39 features - 2 classes - 560 missing values
Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a…
767 runs0 likes8 downloads8 reach7 impact
189 instances - 10 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
143 runs1 likes10 downloads11 reach7 impact
531 instances - 103 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
1032 runs0 likes7 downloads7 reach7 impact
151 instances - 6 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
135 runs0 likes9 downloads9 reach7 impact
3190 instances - 62 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
173 runs0 likes6 downloads6 reach14 impact
106 instances - 59 features - 2 classes - 0 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
721 runs0 likes5 downloads5 reach7 impact
412 instances - 9 features - 2 classes - 96 missing values
Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and…
722 runs0 likes5 downloads5 reach7 impact
285 instances - 8 features - 2 classes - 27 missing values